Crawling
The MicroCrawler class, found in micropredicton/crawler is intended to make it easier to shauffeur algorithms from one stream to the next.
Running the default crawler
Not a terrible way to get familiar with the system.
from microprediction import MicroCrawler
crawler = MicroCrawler(write_key='YOUR WRITE KEY')
crawler.run()
Modifying the sample method
In this pattern we subclass MicroCrawler and override the method that takes lagged values and returns 225 guesses.
from microprediction import MicroCrawler
import numpy as np
class MyCrawler(MicroCrawler):
def __init__(self,**kwargs):
super().__init__(**kwargs)
def sample(self, lagged_values, lagged_times=None, **ignore ):
""" Just a lame example of returning 225 values """
x_std = np.nanstd(lagged_values)
x_mean = np.nanmean(lagged_values)
return sorted([ x*x_std+x_mean for x in np.random.randn(self.num_predictions) ])
mycrawler = MyCrawler(write_key='YOUR WRITE_KEY HERE')
mycrawler.run()
Note self.num_predictions=225
Other modifications
See microprediction/crawler_examples_modification.
Examples
See predict-using-python-microcrawler-examples.
Skating
See predict-using-python-streamskater.
Where MicroCrawler sits in the hierarchy
MicroReader
|
MicroWriter
|
MicroCrawler -----|
| |
StreamSkater
Thus if you want more control, you can predict-using-python using MicroWriter.
Edit this page.